ENGINEERING REPORT IN SUPPORT OF APPLICATION FOR LICENSE AND PROGRAM TEST AUTHORITY EMPLOYING MOMENT METHOD MODELING KCRN 1120 KHZ 50 KW D DA LIMON, COLORADO

JANUARY 2019

ENGINEERING REPORT IN SUPPORT OF APPLICATION FOR LICENSE AND PROGRAM TEST AUTHORITY EMPLOYING MOMENT METHOD MODELING KCRN 1120 KHZ 50 KW D DA LIMON, COLORADO

SUMMARY

This engineering report is submitted on behalf of Catholic Radio Network, Inc., (hereinafter referred to as "CRN"), licensee of AM station KCRN, Limon, Colorado, in support of an application for license and authorization for program test authority to cover construction authorized in permit BMP-20170323AAO. The permit authorizes KCRN to increase day power to 50 kilowatts and change transmitter site location. KCRN is licensed to operate daytime hours only on 1120 kilohertz with power of 0.25 kilowatts employing a non-directional antenna.

In support thereof, contained in this report is a complete method of moments proof of performance for the KCRN directional antenna system with associated engineering exhibits and the Engineering section of FCC Form 302-AM.

METHODOLOGY

The antenna system has been adjusted to produce monitoring system parameters in compliance with the method of moments ("MoM") calculated values (as calculated using Expert Mininec Broadcast Professional Version 23 and the antenna monitoring system has been adjusted to produce monitoring system parameters which are within \pm 5% in field ratio and \pm 3° in phase of the modeled values as required by Section 73.151(c)(2)(ii) of the rules.

All test and impedance measurements, antenna adjustments and antenna modeling presented in this report were done by Kurt R. Gorman of Phasetek, Inc.

SAMPLE SYSTEM

Tower currents were sampled with new Delta TCT-1 toroidal transformers with a sensitivity of 0.5 volts per amp mounted in weatherproof enclosures located at the base of each tower. The toroid sampling units were calibrated by the manufacturer and certified as being within 2% amplitude and 2° phase accuracy. In addition, the units were measured with an Array Solutions VNA-2180 vector network analyzer and found to be within the manufacturer's specifications as shown in the following table.

тст	SN	Amplitude 1120 Khz	Phase 1120 Khz
1	18412	1.000	0.0°
2	18413	1.000	0.1°

The toroidal sampling units are connected to the antenna monitor with equal lengths of Radio Frequency Systems LCF12-50J foam coaxial cable. The sample lines are equal in length, buried and exposed to similar environmental conditions. Manufacturer specifications were verified following installation. The antenna monitor is a new Gorman Redlich CMR, serial number 1060-B. The antenna monitor was calibrated with a "T" connector and two equal length cables. The results are within the manufacturer's rated maximum accuracy of \pm 2% amplitude and \pm 1° phase and are provided in the table below. The sample system as installed meets FCC type approval requirements.

INPUT	Amplitude 1120 Khz	Phase 1120 Khz
1	Reference	0.0°
2	0.999	-0.1°

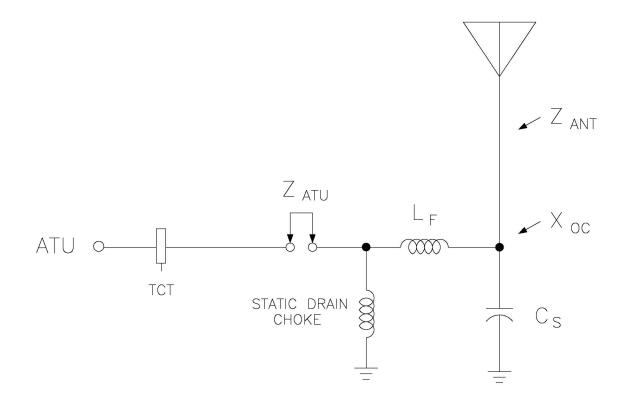
Impedance measurements were made on the antenna sampling system using a Hewlett Packard 8753ES vector network analyzer with a Tunwall directional coupler. The measurements were made looking into the antenna monitor ends of the sample lines with the tower ends opencircuited, and also with them connected to the toroidal sampling transformers, and measured at a frequency of 1120 kilohertz. All connectors were installed on the sample lines and readings were normalized to include the test leads. The table below shows the frequencies above and below the carrier frequency where resonance, defined as zero reactance corresponding with low resistance, was found. The electrical length at carrier frequency appearing in the table below was calculated by computing the ratio of the frequencies.

Tower	Resonance Below 1120 Khz	Resonance Above 1120 Khz	Calculated Electrical Length 1120 khz
1	1057 khz	3186 khz	95.4°
2	1054 khz	3178 khz	95.6°

Based upon the measurements shown above, the sample lines are within the required tolerance of one electrical degree.

To determine the characteristic impedance values of the sample lines, open-circuited measurements were made with frequencies offset to produce \pm 45 degrees of electrical length from resonance. The characteristic impedance was calculated using the following formula, where R1 +j X1 and R2 +j X2 are the measured impedances at the +45 and -45 degree offset frequencies, respectively:

$$Z_0 = ((R_1^2 + X_1^2)^{1/2} \times (R_2^2 + X_2^2)^{1/2})^{1/2}$$


Tower	+45 Degree Offset Frequency (KHz)	+45 Degree Measured Impedance (Ohms)	-45 Degree Offset Frequency (KHz)	-45 Degree Measured Impedance (Ohms)	Calculated Characteristic Impedance (Ohms)	1120 khz Impedance connected to TCT (Ohms)
1	1585.5	2.5 +j 49.9	528.5	0.6 –j 50.4	50.18	34.0 + j17.9
2	1581.3	2.5 +j 50.0	527.1	0.6 –j 50.4	50.23	33.9 + j16.1
			MAXIMUM IM	PEDANCE DELTA	0.05	

As shown above, the sample lines measured characteristic impedance meets the requirement that they be within 2 ohms.

TOWER BASE IMPEDANCE MEASUREMENTS

The impedance of each tower was measured at the output of the networks at the base of each tower. All impedance measurements were obtained with an Array Solutions Power Aim/120. Before use, tests of known impedances were made to verify accurate operation. Measurements were taken with the test leads shorted (for reference), and from the antenna tuning network (ATU) output to the tower with the tower base shorted. All measurements were taken for each tower at the ATU output with the other tower open-circuited. The following exhibits describe the measurement conditions and assumptions used in the MoM analysis.

EXHIBIT 1 KCRN TOWER IMPEDANCE MEASUREMENTS COMPARED TO METHOD OF MOMENTS MODEL

TOWER	Specified	Measured	Measured	Modeled	Modeled	Measured
	Cs (pf)	L⊧(µH)	$X_{F}(\Omega)$	Z_{ANT} (Ω)	Ζατυ (Ω)	Ζατυ (Ω)
1	15	2.70	+j19.0	34.5 –j 1.5	34.4 +j 17.4	34.0 +j 17.9
2	15	2.42	+j17.0	34.5 –j 1.5	34.4 +j 15.4	33.9 +j 15.9

TOWER	Calculated X_{OC} (Ω)
1	-j 11,006.4

2 -j 11,006.5

EXHIBIT II

KCRN MOM MODEL PARAMETERS

Tower #	Wire #	# of Segments	Base Node
1	1	24	1
2	2	24	25

Tower #	Physical Height Degrees	Modeled Height Degrees	Modeled Radius Meters	% of Equivalent Radius
1	80.0	85.8	.2911	100.0
2	80.0	85.8	.2911	100.0

<u>NOTES</u>

- 1. BOTH TOWERS ARE UNIFORM CROSS SECTION, GUYED AND ARE BASE INSULATED. TOWERS HAVE A TRIANGULAR FACE WITH A WIDTH OF 24 INCHES.
- BOTH TOWER BASE INSULATORS ARE AUSTIN A-4197L. BOTH BASE INSULATORS WERE MODELED WITH AN ASSUMED CAPACITANCE OF 15 PF. (-J 9473.5 OHMS AT 1120 KHZ)
- 3. BOTH TOWERS HAVE PHASETEK, INC. P600-161-2-16-18 STATIC DRAIN CHOKES. THESE MEASURE J 68000 OHMS AT1120 KHZ.

CHARLES A. HECHT & ASSOCIATES, INC. BROADCAST ENGINEERING CONSULTANTS

EXHIBIT III

KCRN DERIVED OPERATING PARAMETERS

KCRN Calculated Day Parameters

Tower	Theoretical Field/Phase	Base Network Input Currents	Normalized TCT Value Ratio/ Phase
1 (W)	1.000/0.0°	30.03/5.10°	1.000/0.0°
2 (E)	0.800/102.0°	25.86/103.57°	0.861/98.5°

METHOD OF MOMENTS DETAIL

One wire was used to represent each of the two towers. Towers were driven individually to verify the model compared to measured impedance data. Once the model was verified, the day directional antenna system was computed including the complex voltage values for sources located at ground level. These sources produce current moment sums for each tower that, when normalized, equate to the theoretical field parameters for each respective tower.

EXHIBIT IV

KCRN MOMENT MODELING

TOWER 1 (OTHER OPEN)

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground							
wire caps Distance 1 none 0 0	Angle 0 0	Z 0 85.8		dius 911	segs 12		
2 none 90. 90.	90. 90.	0 85.8	.2	911	12		
Number of wires current node	= 2 5 = 24						
Individual wires segment length radius	minimum wire value 1 7.15 1 .2911		ma wire 1 1	ximum value 7.15 .2911			
ELECTRICAL DESCRIPTION Frequencies (MHz) frequency no. lowest step 1 1.12 0	Frequencies (MHz)no. of segment length (wavelengths)no. loweststepstepsminimummaximum						
Sources source node sector 1 1 1 1	magnitude 1.	phase 0		type voltage			
Lumped loads resistance load node (ohms) 1 13 0	e reactance (ohms) -11,006.5	(mH	uctance)	capacita (uF) O	nce passive circuit 0		
<pre>IMPEDANCE normalization = 50. freq resist reac (MHz) (ohms) (ohm source = 1; node 1, source = 1;</pre>	s) (ohms)	phase (deg)	VSWR	S11 dB	S12 dB		
1.12 34.46 -1.5	167 34.493	357.5	1.4535	-14.664	15097		

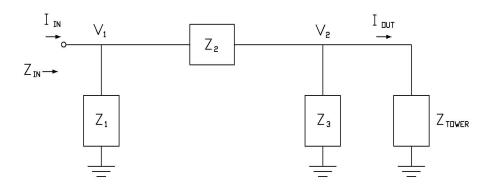
TOWER 2 (OTHER OPEN)

GEOMETRY Wire coordinates in degrees; other dimensions in meters							
Environment: perfect ground							
wire caps Distance 1 none 0 0	Angle 0 0	Z 0 85.8		dius 911	segs 12		
2 none 90. 90.	90. 90.	0 85.8	.2	911	12		
Number of wires current nodes	= 2 = 24						
	minimum			ximum			
	ire value 1 7.15		wire 1	value 7.15			
	1 .2911		1	.2911			
ELECTRICAL DESCRIPTION Frequencies (MHz) frequency no. of segment length (wavelengths) no. lowest step steps minimum maximum 1 1.12 0 1 .0198611 .0198611 Sources source node sector magnitude phase type							
1 13 1 3	1.	0		voltage			
Lumped loads resistance load node (ohms) 1 1 0	reactance (ohms) -11,006.4	(mH	uctance)	capacita (uF) 0	nce passive circuit 0		
<pre>IMPEDANCE normalization = 50. freq resist react (MHz) (ohms) (ohms) source = 1; node 13, se 1.12 34.46 -1.51</pre>) (ohms) ector 1	phase (deg) 357.5	VSWR 1.4535	S11 dB -14.664	S12 dB 15097		

KCRN DAY MEDIUM WAVE ARRAY SYNTHESIS FROM FIELD RATIOS

Frequency = 1.12 MHz field ratio tower magnitude phase (deg) 1 1. 0 2 .8 102. VOLTAGES AND CURRENTS - rms source voltage current magnitude phase (deg) magnitude phase (deg) node 1 1,465.25 23.8 30.0628 4.9 13 592.934 46.5 25.8126 103.5 Sum of square of source currents = 3,140.13Total power = 50,000. watts TOWER ADMITTANCE MATRIX admittance real (mhos) imaginary (mhos) Y(1, 1).0252521 -.0120577 Y(1, 2)-.00816904 .0178883 -.00816904 .0178883 Y(2, 1)Y(2, 2).0252519 -.0120581 TOWER IMPEDANCE MATRIX imaginary (ohms) impedance real (ohms) Z(1, 1)34.5135 -1.51205 Z(1, 2)17.917 -16.3827 Z(2, 1)17.917 -16.3827 Z(2, 2) 34.5135 -1.5115

KCRN DAY SUMMARY


GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground							
wire 1	caps Distance none 0 0	e Ang 0 0	le	Z 0 85.8		dius 911	segs 12
2	none 90. 90.	90. 90.		0 85.8	.2	911	12
Numbe	r of wires current r	= nodes =	2 24				
		min	imum		ma	ximum	
Indiv	idual wires	wire	value		wire	value	
	nt length	1	7.15		1	7.15	
radiu	S	1	.2911		1	.2911	
Frequ no. 1	1.12 (FION step D	no. o steps 1	-	um	h (wavele maximum .019861	
Sourc		tor magn	- tudo	phase		+	
1	e node sect 1 1		itude 2.18	23.8		type voltage	
2	13 1	838.		46.5		voltage	
IMPEDANCE normalization = 50.							
freq			imped	phase	VSWR	S11	S12
(MHz)			(ohms)	(deg)		dB	dB
sourc 1.12	e = 1; node 1 46.102		48.74	18.9	1.4017	-15.533	1232
sourc	e = 2; node 1	13, secto	or 1				
1.12	12.508 -	-19.267	22.971	303.	4.625	-3.8163	-2.3307

Frequ Input Effic	power power iency linates	= 1.12 MHz = 50,000. wat = 100. % in degrees	ts	maq	phase	real	imaginary
no.	X	Y	Z	(amps)	(deq)	(amps)	(amps)
GND	0	0	0	30.0628	(deg) 4.9	(amps) 29.9547	2.54695
2	0	0	7.15	30.0028	2.9	30.1676	1.52316
3	0	0	14.3	29.7526	1.7	29.7396	.877505
4	0	0	21.45	29.7520	1.7 .7	28.7878	.365203
5	0	0	28.6	27.3388	., 359.9	27.3387	0410281
6	0	0	35.75	27.3388	359.2	25.4167	351359
7	0	0	42.9	23.0548	358.6	23.0477	570291
8	0	0	50.05	20.2721	358.	20.26	700418
9	0	0	57.2	17.098	357.5	17.0819	743643
9 10	0	0	64.35	17.098	357.5	13.5374	701378
11	0	0	71.5	9.65182	356.6	9.63475	573802
12	0	0	78.65	5.34462	356.2	5.33267	357112
END	0	0	85.8	0	0	0	0
GND	0	-90.	0	25.8127	103.5	-6.03598	25.0971
14	0	-90.	7.15	25.8127	103.5	-5.66561	24.5987
14 15	0	-90.	14.3	24.4334	103.	-5.33354	23.8441
16	0	-90.	21.45	24.4334	102.8	-4.96328	22.766
10	0	-90.	28.6	23.3008	102.3	-4.54937	22.768
18	0	-90.	35.75	21.8484	102.	-4.09302	19.661
18 19	0	-90.	42.9	18.0269	101.8	-3.5982	17.6642
20	0	-90.	42.9 50.05	15.7005	101.3	-3.07021	15.3974
20 21		-90.	57.2		101.3		
21 22	0 0	-90. -90.	57.2 64.35	13.125 10.3188	101.	-2.51474 -1.93703	12.8818 10.1354
		-90.					
23	0		71.5	7.28888	100.6	-1.34019 720825	7.16462
24 END	0	-90.	78.65	4.00505	100.4		3.93964
END	0	-90.	85.8	0	0	0	0

EXHIBIT V KCRN TOWER BASE CIRCUIT ANALYSIS MODEL

CIRCUIT ANALYSIS

Circuit Analysis was performed on each tower of the KCRN model. "Phasetek" nodal Circuit Analysis program was used to compute base model Input/Output voltages and currents. For the directional mode, the calculated Mininec Tower Base Drive Voltage was used to determine the Base Network Input Current. This point is the location of the Sampling TCT. " Z_1 " represents the ATU Shunt impedance, " Z_2 " represents the Tower Feed impedance, and " Z_3 " represents the Tower Base Shunt impedance.

EXHIBIT VI KCRN CIRCUIT ANALYSIS

BASE NETWORK COMPUTATION

KCRN TOWER 1 (OTHER OPEN)

		IMPEDANCE	(OHMS)
TO	NODE	R	Х
	GROUND	0.00	68000.00
	GROUND	34.45	-1.65
	2	0.00	19.00
	TO	GROUND	GROUND 0.00 GROUND 34.45

	VOLTA	GE
NODE	MAGNITUDE	PHASE
1	100.00	0.00
2	89.41	-29.47

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS):	34.43	17.37	38.56	26.77
INPUT CURRENT (AMPS):	2.32	-1.17	2.59	-26.77
OUTPUT CURRENT (AMPS):	2.31	-1.17	2.59	-26.95

INPUT/OUTPUT CURRENT RATIO = 1.0004 INPUT/OUTPUT PHASE = 0.18 DEGREES

BASE NETWORK COMPUTATION

KCRN TOWER 1 DAY

FREQUENCY : 1120.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, 68000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 19.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -9473.50 OHMS TOWER IMPEDANCE (R,X) : 46.10, 15.82 OHMS

0
2
0

	VOLTAGE	
NODE	MAGNITUDE	PHASE
1	1734.01	41.95
2	1465.25	23.80

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS):	46.21	34.63	57.75	36.85
INPUT CURRENT (AMPS):	29.91	2.67	30.03	5.10
OUTPUT CURRENT (AMPS):	29.95	2.55	30.06	4.86

INPUT/OUTPUT CURRENT RATIO = 0.9989 INPUT/OUTPUT PHASE = 0.24 DEGREES

BASE NETWORK COMPUTATION

KCRN TOWER 2 (OTHER OPEN)

FREQUENCY : 1120.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, 68000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 17.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -9473.50 OHMS TOWER IMPEDANCE (R,X) : 34.46, -1.52 OHMS

			IMPEDANCE	(OHMS)
NODE	TO	NODE	R	Х
1		GROUND	0.00	68000.00
2		GROUND	34.45	-1.65
1		2	0.00	17.00
1	ТО	GROUND	0.00 34.45	-1.65

	VOLTA	GE
NODE	MAGNITUDE	PHASE
1	100.00	0.00
2	91.44	-26.76

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS):	34.43	15.37	37.71	24.05
INPUT CURRENT (AMPS):	2.42	-1.08	2.65	-24.05
OUTPUT CURRENT (AMPS):	2.42	-1.09	2.65	-24.23

INPUT/OUTPUT CURRENT RATIO = 1.0004 INPUT/OUTPUT PHASE = 0.18 DEGREES

BASE NETWORK COMPUTATION

KCRN TOWER 2 DAY

FREQUENCY : 1120.00 kHz ATU SHUNT IMPEDANCE (R,X) : 0.00, 68000.00 OHMS TOWER FEED IMPEDANCE (R,X) : 0.00, 17.00 OHMS TOWER SHUNT IMPEDANCE (R,X) : 0.00, -9473.50 OHMS TOWER IMPEDANCE (R,X) : 12.51, -19.27 OHMS

			IMPEDANCE	(OHMS)
NODE	TO	NODE	R	Х
1		GROUND	0.00	68000.00
2		GROUND	12.46	-19.24
1		2	0.00	17.00

	VOLTAG	ΞE
NODE	MAGNITUDE	PHASE
1	327.39	93.37
2	592.93	46.50

	REAL	IMAGINARY	MAGNITUDE	PHASE
INPUT IMPEDANCE (OHMS):	12.46	-2.24	12.66	-10.20
INPUT CURRENT (AMPS):	-6.07	25.14	25.86	103.57
OUTPUT CURRENT (AMPS):	-6.03	25.10	25.81	103.51

INPUT/OUTPUT CURRENT RATIO = 1.0020 INPUT/OUTPUT PHASE = 0.07 DEGREES

FIELD STRENGTH MEASUREMENTS

Reference field strength measurements were made using a Potomac Instruments FIM-4100, serial number 249, last calibrated January 21, 2016. Measurements were taken at three locations along each pattern null radial determined from the KCRN standard daytime pattern and on the major lobe radial of the pattern. The measured field strengths, descriptions, and GPS coordinates for the reference measurement points are shown below. All locations indicated are listed using NAD 27 datum.

Point No.	Dist. Km.	Latitude	Longitude	Time Local	Field mV/m	Point Description
1	2.92	39° 17' 15.0"	104° 07' 53.7"	1349	114	County Road 113
2	7.02	39° 18' 21.3"	104° 05' 24.8"	1330	47.4	County Road 122
3	7.58	39° 18' 30.1"	104° 05' 04.6"	1323	37.1	County Road 125 west side

60° Radial Day

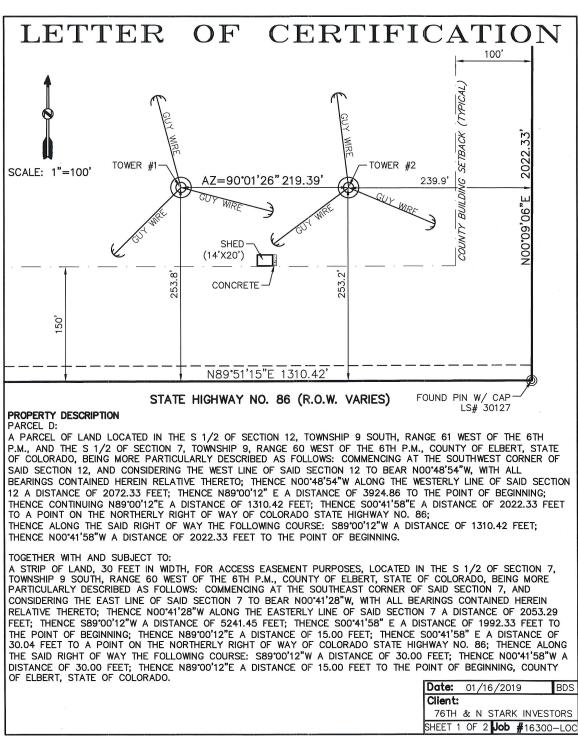
120° Radial Day

Point No.	Dist. Km.	Latitude	Longitude	Time Local	Field mV/m	Point Description
1	1.95	39° 15' 56.0"	104° 08' 28.7"	1257	132	County Road 113 opposite metal building on west side
2	3.79	39° 15' 26.4"	104° 07' 22.0"	1307	87.7	County Road 117 east side
3	3.94	39° 15' 23.4"	104° 07' 17.3"	1310	92.3	Drive 26710 County Road 117 north of dumpster

,						
Point No.	Dist. Km.	Latitude	Longitude	Time Local	Field mV/m	Point Description
1	1.48	39° 16' 27.6"	104° 10' 41.6"	1206	2234	County Road 105
2	6.30	39° 16' 27.8"	104° 14' 03.4"	1220	414	County Road 93
3	7.85	39° 16' 27.8"	104° 15' 07.9"	1240	320	Highway 86 north side

270° Radial Day

All measurements were conducted on January 20, 2019 by Kurt R. Gorman.


TOWER ARRAY SURVEY

Shown below is a survey of the KCRN tower array conducted by a licensed professional land surveyor confirming the KCRN tower array has been built in compliance with FCC specifications.

Physical Address: 345 Comanche Street Mail to: P.O. Box 384 • Kiowa, CO 80117

Ph. 303.621.8672 • Fax 303.621.7749 www.HighPrairieSurvey.com • info@highprairiesurvey.com

CHARLES A. HECHT & ASSOCIATES, INC. BROADCAST ENGINEERING CONSULTANTS

Physical Address: 345 Comanche Street Mail to: P.O. Box 384 • Kiowa, CO 80117

Ph. 303.621.8672 • Fax 303.621.7749 www.HighPrairieSurvey.com • info@highprairiesurvey.com

CERTIFICATION LETTER \mathbf{OF} I CERTIFY THAT ON JANUARY 15, 2019 THAT I PERFORMED A SURVEY OF THE RADIO TOWERS AND DETERMINED THAT THE HORIZONTAL DISTANCE BETWEEN THE CENTER OF THE TOWERS IS 219.38 FEET AND THE AZIMUTH BETWEEN THE CENTER OF THE TWO TOWERS IS 90'01'26" AND BASED UPON TRUE NORTH. THIS LETTER OF CERTIFICATION WAS PREPARED BY KEITH WESTFALL, COLORADO PLS# 30127 FOR AND ON BEHALF OF HIGH PRAIRIE SURVEY COMPANY, 345 COMANCHE STREET, P.O. BOX 384, KIOWA, COLORADO 80117. NAL LAS Reference: Revision Date: Date: 01/16/2019 BDS Client: 76TH & N STARK INVESTORS SHEET 2 OF 2 **Job #**16300-LOC

Survey Co

DECLARATION

The foregoing was prepared by or under the immediate supervision of Charles A. Hecht of Charles A. Hecht & Associates, Inc., Freehold, New Jersey, whose qualifications are a matter of record with the Federal Communications Commission. All statements herein are true and correct of his knowledge except such statements made on information and belief, and as to those statements, he believes them to be true and correct under the penalty of perjury.

Respectfully submitted,

/s/

Charles A. Hecht Charles A. Hecht & Associates, Inc. 19 Mackenzie Court Freehold, New Jersey 07728 (732) 577-0711 January 25, 2019